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We consider probabilistic model checking for continuous-time Markov chains (CTMCs) induced from Stochastic Reaction

Networks (SRNs) against a time-bounded fragment of Continuous Stochastic Logic (CSL) extended with reward operators.

Classical numerical algorithms for CSL model checking based on uniformisation are limited to finite CTMCs and suffer from

exponential growth of the state space with respect to the number of species. On the other hand, approximate techniques

such as mean-field approximations and simulations combined with statistical inference are more scalable, but can be time

consuming and do not support the full expressiveness of CSL. In this paper we employ a continuous-space approximation of

the CTMC in terms of a Gaussian process based on the Central Limit Approximation (CLA), also known as the Linear Noise

Approximation (LNA), whose solution requires solving a number of differential equations that is quadratic in the number of

species and independent of the population size. We then develop efficient and scalable approximate model checking algorithms

on the resulting Gaussian process, where we restrict the target regions for probabilistic reachability to convex polytopes. This

allows us to derive an abstraction in terms of a time-inhomogeneous discrete-time Markov chain (DTMC), whose dimension

is independent of the number of species, on which model checking is performed. Using results from probability theory, we

prove the convergence in distribution of our algorithms to the corresponding measures on the original CTMC. We implement

the techniques and, on a set of examples, demonstrate that they allow us to overcome the state space explosion problem,

while still correctly characterizing the stochastic behaviour of the system. Our methods can be used for formal analysis of a

wide range of distributed stochastic systems, including biochemical systems, sensor networks and population protocols.
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1 INTRODUCTION
Distributed systems with Markovian interactions can be modelled as continuous-time Markov chains [28].

Examples include randomised population protocols [5], genetic regulatory networks [49] and biochemical

systems evolving in a spatially homogeneous environment, at constant volume and temperature [28, 31]. For
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such systems, stochastic modelling is necessary to describe stochastic fluctuations for low/medium population

counts that deterministic fluid techniques cannot capture [28].

A versatile programming language for modelling the behaviour of Markovian distributed systems is that

of Stochastic Reaction Networks (SRNs), which induce CTMCs under certain mild restrictions. Computing the

probability distributions of the species of a SRN over time is achieved by solving the Kolmogorov Equation,

also known in the biochemical literature as the Chemical Master Equation (CME) [50]. Unfortunately, classical

numerical solution methods for computing transient probability based on uniformisation [9] are often infeasible

because of the state space explosion problem, that is, the number of states of the resulting Markov chain grows

exponentially with respect to the number of species and may be infinite. A more scalable transient analysis can

be achieved by employing simulations combined with statistical inference [30], but to obtain good accuracy large

numbers of simulations are needed, which for some systems can be very time consuming.

A promising approach, which we explore in this paper, is to instead approximate the CTMC induced by a

Stochastic Reaction Network as a continuous-space stochastic process by means of the Central Limit Approximation
(CLA) [28], also known in statistical physics as the Linear Noise Approximation (LNA). That is, a Gaussian process

is derived to approximate the original CTMC [50]. As the marginals of a Gaussian process are fully determined by

its expectation and covariances, its solution requires solving a number of differential equations that is quadratic

in the number of species and independent of the population size. As a consequence, the CLA is generally much

more scalable than a discrete-state stochastic representation and has been successfully used for analysis of large

Stochastic Reaction Networks [18, 21–23]. However, none of these works enables the computation of complex

temporal properties such as global probabilistic reachability properties, which quantify the probability of reaching

a particular region of the state space in a particular time interval. This property is fundamental for verification

of more complex temporal logic properties, for example probabilistic until properties, where the probability of

reaching a certain region within a certain time bound while remaining in another region is quantified. Such

properties can be expressed in Continuous Stochastic Logic (CSL) [6] or Linear Temporal Logic (LTL) [45], whose

formulae are verified by reduction to the computation of the reachability properties [10].

1.0.1 Contributions. We derive fast and scalable approximate probabilistic model checking algorithms for

CTMCs induced by Stochastic Reaction Networks against a time-bounded fragment of CSL extended with reward

operators. Our model checking algorithms are numerical and explore a continuous-space approximation of

the CTMC in terms of a Gaussian process. One of our key results is a novel scalable algorithm for computing

probabilistic reachability for Gaussian processes over target regions of the state space that are assumed to be

convex polytopes, i.e. intersections of a finite set of linear inequalities. More specifically, for a CTMC approximated

as a Gaussian process, the resulting algorithm computes the probability that the system falls in the target region

within a specified time interval. Given a set ofk linear inequalities, and relying on the fact that a linear combination

of the components of a Gaussian distribution is still Gaussian, we discretize time and space for the k-dimensional

stochastic process defined by the particular linear combinations. This allows us to derive an abstraction in terms

of a time-inhomogeneous discrete-time Markov chain (DTMC), whose dimension is independent of the number of

species, since a linear combination is a uni-dimensional entity. The method ensures scalability, as in general we are

interested in a small number, i.e., one or at most two, of linear inequalities. This abstraction is then used to perform

model checking of time-bounded CSL properties [9, 37]. To compute such an abstraction, the most delicate aspect

is to derive equations for the transition kernel of the resulting DTMC. This is formulated as the conditional

probability at the next discrete time step given the system in a particular state. Reachability probabilities are then

computed by making the target set absorbing. We then extend CSL with the reward operators as in [37]. We

derive approximate reward measures for such operators using the CLA, and prove the convergence in distribution

of our algorithms to the original measures when the size of the system (number of molecules) tends to infinity.
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We show the effectiveness of our approach on a set of case studies taken from the biological literature, also in

cases where existing numerical model checking techniques are infeasible.

A preliminary version of this work has appeared in [14]. This paper extends [14] in several aspects. While in

[14] we only consider probabilistic reachability, here we generalise our algorithms to the time-bounded fragment

of CSL, which we also extend with reward operators. Furthermore, we prove weak convergence of our algorithms

and significantly extend the experimental evaluation.

1.0.2 Related work. Algorithms for model checking CSL properties for continuous-time Markov chains have

been introduced and then improved with techniques based on uniformization [8] (essentially a discretisation

of the original CTMC), and reward computation [37]. The analysis typically involves computing the transient

probability of the system residing in a state at a given time, or, for a model annotated with rewards, the expected

reward that can be obtained. Despite improvements such as symmetry reduction [33], sliding window [52] and

fast adaptive uniformisation [26], their practical use for Stochastic Reaction Networks is severely hindered by

state space explosion [33], which in a SRN grows exponentially with the number of molecules when finite, and

may be infinite, in which case finite projection methods have to be used [43]. As a consequence, approximate

but faster algorithms are appealing. The mainstream solution is to rely on simulations combined with statistical

inference to obtain estimates [20, 38]. These methods, however, are still computationally expensive. A recent

trend of works explored as an alternative whether estimates could be obtained by relying on approximations of

the stochastic process based on mean-field [15] or linear noise [18, 19, 22]. However, CSL and some classes of

reward properties, like those considered here, are very challenging. In fact, most approaches consider either local

properties of individual molecules [15], or properties obtained by observing the behaviour of individual molecules

and restricting the target region to an absorbing subspace of the (modified) model [18]. The only approach dealing

with more general subsets, [19], imposes restrictions on the behaviour of the mean-field approximation, whose

trajectory has to enter the reachability region in a finite time. Another interesting approach has been developed

in [42, 47], where model checking of time-bounded properties for CTMCs is expressed as a Bayesian inference

problem, and approximated model checking algorithms are derived. However, no guarantees on the convergence

of the resulting algorithms are given.

Our approach differs in that it is based on the CLA and considers regions defined by polytopes, which

encompasses most properties of practical interest. The simplest idea would be to consider the CLA and compute

reachability probabilities for this stochastic process, invoking convergence theorems for the CLA to prove the

asymptotic correctness. Unfortunately, there is no straightforward way to do this, since dealing with a continuous

space and continuous time diffusion process, e.g., Gaussian, is computationally hard, and computing reachability

is challenging (see [1]). As a consequence, discrete abstractions are appealing.

2 BACKGROUND
Stochastic Reaction Networks. A Stochastic Reaction Network (SRN) C = (Λ,R) is a pair of finite sets, where
Λ is a set of species, |Λ| denotes its size, and R is a set of reactions. Species λ ∈ Λ interact according to the

reactions in R. A reaction τ ∈ R is a triple τ = (rτ ,pτ ,ατ ), where rτ ∈ N
|Λ |

is the reactant complex, pτ ∈ N |Λ | is the
product complex and ατ : R

|Λ |
≥0
→ R≥0 is the reaction rate associated to τ . rτ and pτ represent the stoichiometry of

reactants and products. Given a reaction τ1 = ([1, 1, 0]
T , [0, 0, 2]T ,α1), where ·

T
is the transpose of a vector, we

often refer to it as τ1 : λ1 + λ2 →
α1

2λ3. The state change associated to a reaction τ is defined by υτ = pτ − rτ . For
example, for τ1 as above, we have υτ1

= [−1,−1, 2]T . A configuration or state x ∈ N |Λ | of the system is given by a

vector of the number of molecules of each species. Given a configuration x then xλi represents the number of

molecules of λi in the configuration and x̂λi =
xλi
N is the concentration or density of λi in the same configuration,

where N is the population system size, which for molecular systems may represent the volume of the solution,

and otherwise it is typically the total population count.
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Stochastic Reaction Networks are a versatile programming language used to model stochastic evolution of

populations of indistinguishable agents, where the species represent the states of the agents. They are relevant not

only for modelling of biochemical systems, such as genetic regulatory networks, molecular signalling pathways

and DNA computing circuits, but also certain classes of stochastic distributed systems due to their equivalence to

Petri nets [44], Vector Addition Systems (VAS) [35] and distributed population protocols [5].

Example 2.1. As a running example we consider the following simple model of gene expression [48], where

the mRNA is produced by an always active promoter, and then catalyzes the production of the protein. We have

Λ = {mRNA, Pro} and the following set of reactions R:

→0.5 mRNA; mRNA→0.0058·mRNA mRNA + Pro

mRNA→0.0029·mRNA
; Pro →0.0001·Pro

2.1 Stochastic Semantics of Stochastic Reaction Networks
Under the well-mixed assumption [3], a Stochastic Reaction Network C = (Λ,R) induces a discrete-state Markov

process. For a reaction τ , ατ is also called the propensity rate of reaction τ and is a function of the current

configuration x of the system, such that ατ (x)dt is the probability that a reaction event occurs in the next time

interval dt . For instance, in case of mass action kinetics, ατ (x) = kτ
∏|Λ|
i=1

ri,τ !

N |rτ |−1

∏ |Λ |
i=1

(xλi
ri,τ

)
, where ri,τ ! is the factorial

of ri,τ , |rτ | =
∑ |Λ |

i=1
ri,τ , and xλi is the component of vector x relative to species λi [4]. In this paper we assume

ατ : R
|Λ |
≥0
→ R≥0 is a real analytic function [15], that is, a function that locally coincides with its Taylor expansion.

This is not restrictive, as it includes all the more commonly used kinetics such as mass action or Hill. We also

require that the SRN satisfies the density dependent rate condition1, that is, for any ατ , there exists a function

βτ : R
|Λ |
≥0
→ R≥0 such that for x ∈ R |Λ |

≥0
it holds that ατ (x) = Nβτ (x̂), where x̂ =

x
N represents the concentration

of the species in Λ in configuration x . Consequently, a SRNC = (Λ,R) is modelled in terms of a time-homogeneous
continuous-time Markov chain (CTMC) [28] (XN (t), t ∈ R≥0) with state space S given by the set of possible

configurations of the system, where in XN
we made explicit the dependence on the system size N . Thus, XN (t)

is a random vector describing the population count of each species at time t . Given XN
, we denote by X̂N = X N

N
the CTMC describing the evolution of the species in Λ in terms of concentrations. The transient evolution of

XN
, and consequently also of the concentrations X̂N

, is described by the Kolmogorov equations, also called the

Chemical Master Equation (CME), namely, a set of differential equations describing the transient evolution of the

reachable states x .

Definition 2.2. (Kolmogorov Equations) Let x0 ∈ N
|Λ |

be the initial configuration of XN
. For x ∈ S , we define

P(x , t |x0) = Probability(XN (t) = x |XN (0) = x0). P(x , t |x0) describes the transient evolution of XN
, and is the

solution of the following system of ordinary differential equations (ODEs):

d

dt
(P(x , t |x0) ) =

∑
τ ∈R

{ατ (x − υτ )P(x − υτ , t |x0) − ατ (x)P(x , t |x0)}. (1)

Solving Eqn (1) requires computing the solution of a differential equation for each reachable state. The size of

the reachable state space is exponential in the number of the species, and may be infinite. As a consequence,

solving the CME is generally feasible only for SRNs with very few species and small molecular populations. This

is the so-called state space explosion problem, which strongly limits the applicability of the CME in practice.

Finite projection methods have been developed to numerically solve Eqn (1) when the state space is not finite

1
Note that this condition is not strictly necessary for our results, but guarantees a simpler form for equations [28].
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[43]. However, they still suffer from the state space explosion problem and are limited to SRNs with few species

and moderate population counts.

Often, Eqn (1) is a approximated with a deterministic model using fluid techniques [15], where the concentra-

tions of the species are approximated over time as the solution Φ(t) of the following set of ODEs, the so-called
rate equations:

dΦ(t)

dt
= F (Φ(t)) =

∑
τ ∈R

υτ · βτ (Φ(t)), (2)

where in case of mass action kinetics we have βτ (Φ(t)) = (kτ
∏ |Λ |

i=1
Φ
ri,τ
i (t)), for Φ

ri,τ
i (t) the i-th component of

vector Φ(t) raised to the power of ri,τ , i-th component of vector rτ . The initial condition is Φ(0) = x0

N = x̂ . Eqn

(2) converges to X̂N (t), t ∈ R≥0 when N , the system size, tends to infinity [28]. However, Eqn (2) completely

neglects the stochastic fluctuations, which may be essential to understand the behaviour of the system being

modelled [22].

Example 2.3. Consider the SRN introduced in Example 2.1. Then, for t ∈ R≥0, we have that XN (t) =
[XN

mRNA(t),X
N
Pro] is a random variable describing the number of molecules in the system at time t . Given

an initial condition x0 ∈ N
2

≥0
, S , the state space of XN

is given by the set of states reachable from x0. That

is, for any x ∈ S there is a sequence of reactions τ1, ...,τn ∈ R such that x = x0 + υτ1
+ ... + υτn . Note

that the presence of the reaction →0.5 mRNA implies that, in this example, S is not finite. Thus, most of

the techniques commonly used for model checking CTMCs would not be directly applicable in this case [37].

X̂N (t) = [X̂N
mRNA(t), X̂

N
Pro(t)] = [

X N
mRNA(t )

N ,
X N
Pro (t )
N ] describes the evolution of mRNA and Pro in terms of concen-

trations.

2.2 Central Limit Approximation
The Central Limit Approximation (CLA), also called the Linear Noise Approximation (LNA), is a continuous-space
approximation of the CTMC in terms of a Gaussian process based on the Central Limit theorem [28, 50].

The CLA at time t approximates the distribution of XN (t) with the distribution of the random vector YN (t)
such that:

XN (t) ≈ YN (t) = NΦ(t) + N
1

2G(t) (3)

where G(t) = (G1(t),G2(t), ...,G |Λ |) is a random vector, independent of the system size N , representing the

stochastic fluctuations at time t around Φ(t), the solution of Eqn (2). The probability distribution of G(t) is given
by the solution of a linear Fokker-Planck equation [51]. As a consequence, for any time instant t , G(t) has a
multivariate normal distribution whose expected value E[G(t)] and covariance matrix cov(G(t)) are the solution
of the following differential equations:

dE[G(t)]

dt
= JF (Φ(t))E[G(t)] (4)

dcov(G(t))

dt
= JF (Φ(t))cov(G(t)) + cov(G(t))J

T
F (Φ(t)) +W (Φ(t)) (5)

where JF (Φ(t)) is the Jacobian of F (Φ(t)), JTF (Φ(t)) its transpose,W (Φ(t)) =
∑
τ ∈R υτυτ

Tαc,τ (Φ(t)) and Fj (Φ(t)) the

jth component of F (Φ(t)). We assumeXN (0) = x0 with probability 1; as a consequence E[G(0)] = 0 andC[G(0)] =
0, which implies E[G(t)] = 0 for every t . The following theorem illustrates the nature of the approximation using

the CLA.

Theorem 2.4 ([28]). Let C = (Λ,R) be a SRN, XN the discrete state space Markov process induced by C and
X̂N = X N

N . Let Φ(t) be the solution of Eqn (2) with initial condition Φ(0) = x̂ and G be the Gaussian process with
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expected value and variance given by Eqns (4) and (5). Then, for any t ∈ R≥0 we have:

N
1

2

��X̂N (t) − Φ(t)
��⇒N→∞ G(t). (6)

In the above,⇒N→∞ indicates convergence in distribution as the system size parameter N increases [12]. The

CLA is exact in the limit of high populations, but has also been successfully used in many different scenarios

showing surprisingly good results [32, 51]. To compute the CLA it is necessary to solve O(|Λ|2) first order
differential equations, and the complexity is independent of the initial number of molecules of each species.

Therefore, one can avoid the exploration of the state space that methods based on uniformization rely upon,

taking an important step towards scalable stochastic analysis of reaction systems.

By Eqn (3), we have that the distribution of YN (t) is Gaussian with expected value and covariance matrix given

by:

E[YN (t)] = NΦ(t)

cov(YN (t)) = N
1

2 cov(G(t))N
1

2 = Ncov(G(t)).

Then, the following standard proposition guarantees that a set of linear combinations of the components of YN

is still Gaussian.

Proposition 2.5 ([2]). LetB ∈ Zm×|Λ | be amatrix andYN a |Λ|−dimensional Gaussian process. Then,ZN = B·YN

is a m-dimensional Gaussian process. For any t ∈ R≥0, we have that ZN (t) is characterized by the following mean
and covariance:

E[ZN (t)] = BE[YN (t)] (7)

cov(ZN (t)) = Bcov(YN (t))BT . (8)

Example 2.6. Consider the SRN introduced in example 2.1. According to Theorem 2.4 we can associate to

C a Gaussian process YN (t) with values in R2. Suppose we want to know the distribution of ZN
mRNA+Pro(t) =

YN
mRNA(t)+Y

N
Pro(t), where Y

N
mRNA and YN

Pro are the components of YN
relative tomRNA and Pro. Then, we have

that ZN
mRNA+Pro(t) is still Gaussian and with mean and variance given by

E[ZN
mRNA+Pro(t)] = E[YN

mRNA(t)] + E[Y
N
Pro(t)] cov(ZN

mRNA+Pro(t)) = [1, 1]cov(Y
N (t))[1, 1]T .

Thus, ZN
represents the time evolution of m linear combinations of the population counts of the species

defined by B over time. Importantly, ZN
is still a Gaussian process, and hence completely characterized by its

mean and covariance matrix. Note also that the distribution of ẐN = ZN

N (concentrations) depends on YN only
via its mean and covariance, which are obtained by solving ODEs in Eqns (4) and (5). This is a key feature that we

will use to obtain an effective dimensionality reduction in our model checking algorithms.

3 CONTINUOUS STOCHASTIC LOGIC (CSL)
Temporal properties of continuous time Markov chains can be expressed using Continuous Time Stochastic Logic
(CSL) [7], which can thus be used for the CTMC XN

induced from a SRNC = (Λ,R). We will develop approximate

model checking algorithms for CSL based on the Central Limit Approximation. Since CLA is correct in the limit of

diverging system size N , we will define CSL for the normalized process X̂N = X N

N , as introduced in the previous

section. Therefore, we will be working in terms of concentrations instead of population counts. This is not a

limitation: if we are interested in a fixed value of N , population counts can always be rescaled to population

densities, and vice versa, by dividing or multiplying them by N . In the following, we will thus refer to states and

concentrations interchangeably without loss of generality.

Given a SRNC = (Λ,R), a path of the induced CTMC X̂N
is defined asω = x̂0t0x̂1t1...where x̂k ∈ R

|Λ |
≥0
, tk ∈ R≥0

and for all k ≥ 0 there exists τ ∈ R such that βτ (x̂k ) > 0 and x̂k +
υτ
N = x̂k+1, where βτ is the density dependent
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rate. That is, ω is an alternating sequence of states (equivalently, concentrations) and residence times in those

states. Let Ω be the set of all paths of X̂N
and Ωx̂0

the set of all paths of X̂N
starting from x̂0. Call ω(t) the state of

the path at time t , i.e. ω(t) = x̂n where

∑n
k=0

tk ≤ t ≤
∑n+1

k=0
tk . Then, a probability measure, Prob, for X̂N

can be

defined using cylinder sets of paths [37]. For further details on the measure-theoretic properties we refer to [9].

Since X̂N
takes values in R

|Λ |
≥0
, we will work with predicates over concentrations, similarly to how real-time

signals are verified in Signal Temporal Logic (STL) [41], instead of the conventional atomic propositions defined

in states of the Markov chain [37].

Definition 3.1. (Convex Predicate). Let η : R |Λ | → {true, false} be a predicate. We call η a convex predicate if
there exist B1, ...,Bm ∈ Z

|Λ |, l1, ..., lm ∈ R,m > 0, such that for x̂ ∈ R |Λ | it holds that:

η(x̂) = (B1 · x̂ ≤ l1) ∧ ... ∧ (Bm · x̂ ≤ lm)

Hence, convex predicates are true for concentration x̂ belonging to a, not necessarily bounded, convex polytope.

We denote by Θ the set of all convex predicates with domain in R
|Λ |
≥0
.

We now define the time-bounded fragment of CSL for SRNs as follows. We do not consider time-unbounded

properties because of the nature of the convergence of CLA, which is guaranteed just for finite time. In Section 7

we extend this fragment with reward operators.

Definition 3.2. (CSL Syntax) Given a SRN C = (Λ,R), and the induced CTMC X̂N
, we define the syntax of CSL

as:

Ψ ::= ¬Ψ | Ψ1 ∧ Ψ2 | P∼p (F
[t1,t2] η) | P∼p (η1U

[t1,t2] η2)

where η,η1,η2 ∈ Θ, t1, t2 ∈ R≥0, ∈ [0, 1] and ∼∈ {<, >}.

The above definition slightly differs from the usual definition of CSL in that the reachability (F [t1,t2]
) and

until (U [t1,t2]
) operators work directly with predicates over concentrations, rather state labels. Note also that,

in Definition 3.1, we do not allow nesting of CSL properties, and we restrict predicates to sets that are convex

polytopes. This latter point does not limit the expressivity of the logic. However, it is a fundamental requirement

for our model checking algorithms, which allows us to obtain an exponential speed up compared to existing

algorithms.

Example 3.3. Given the SRNC of Example 2.1 forN = 100, the property "is the probability that the concentration

of Pro remains below 0.1 until there is a concentration of mRNA of at least 0.3 in the first 50 time units greater

than 0.6?" can be expressed as:

P>0.6[( ˆPro < 0.1)U [0,50] ( ˆmRNA > 0.3)],

where with an abuse of notation we call ˆPro and ˆmRNA the components of vector X̂N
relative to species Pro and

mRNA. Obviously, this property is equivalent to the following one, but expressed on the rescaled process XN
:

P>0.6[(Pro < 10)U [0,50] (mRNA > 30)].

Definition 3.4. (Semantics of CSL) Let X̂N
be the CTMC induced by SRN C . Given x̂ ∈ R |Λ |

≥0
, the semantics of

CSL is defined as follows:

X̂N , x̂ |= ¬Ψ ↔ X̂N , x̂ ̸ |= Ψ

X̂N , x̂ |= Ψ1 ∧ Ψ2 ↔ X̂N |= Ψ1 ∧ X̂
N |= Ψ2

X̂N , x̂ |= P∼p (F
[t1,t2]η) ↔ Prob(∃t ∈ [t1, t2] s .t .η(ω(t)) |ω ∈ Ωx̂ ) ∼ p

X̂N , x̂ |= P∼p (η1U
[t1,t2]η2) ↔ Prob(∃t ∈ [t1, t2] s .t .η2(ω(t)) ∧ ∀t ′ ∈ [0, t)η1(ω(t

′)) |ω ∈ Ωx̂ )) ∼ p
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Note that the reachability operator can be expressed with the until. For example, P>0.9[F
[0,1]mRNA > 0] is

equivalent to P>0.9[mRNA ≥ 0U [0,1]mRNA > 0]. Similarly to classical CSL, ∼ can be replaced with =?, in the

style of quantitative model checking, indicating the probability of satisfaction [34].

Model checking procedures for CTMCs against CSL specifications are well known [10, 37]. They reduce to

computing the probability of reaching a given set, and hence to solving Eqn (1), albeit resulting in the well known

state space explosion problem. Here, we explore the usage of the CLA to derive approximate model checking

procedures that converge to the original CTMC values but do not suffer from the state space explosion problem,

therefore enabling fast stochastic characterization of the system.

4 THE REACHABILITY OPERATOR
In this section we define our CLA-based algorithm to verify the probabilistic reachability operator P∼p (F

[t1,t2]η),
which is the key procedure for model checking of more complex CSL properties. As η is a convex predicate, in

order to check this property, for a convex polytope A defined as A = {x ∈ R |Λ |
≥0

s .t . ∀i ∈ {1, ...,m}(Bx)i ≤ bi }

where B ∈ Zm×|Λ |,b ∈ Rm , we need to compute:

PAreach(x̂0, t1, t2) = Prob(∃t ∈ [t1, t2] s .t .ω(t) ∈ A |ω ∈ Ωx̂0
),

where Ωx̂0
is the set of paths of X̂N

starting from x̂0 as defined in Section 3. We will compute such a probability

for ŶN = Y N

N , the CLA of XN
expressed in terms of concentrations, and then show how the computed measure

converges to the original process X̂N
, but guaranteeing much greater scalability. Computing the reachability

probability for ŶN
is not straightforward, because the system evolves in continuous time and analytic solutions

cannot be derived in general. As a consequence, we need to devise numerical algorithms and prove their

correctness. Here, we derive a scalable numerical algorithm based on time and space discretization of linear

projections of ŶN
, and, using properties of Gaussian processes, we then prove the convergence of the algorithm

to the original measure.

In order to exploit the CLA, we first discretize time for the Gaussian process given by the CLA, with a fixed

(or adaptive) step size h, which we can do effectively owing to the Markov property and the knowledge of its

mean and covariance. As a result, we obtain a discrete-time, continuous-space, Markov process with a Gaussian

transition kernel. Then, by resorting to state space discretization with parameter ∆z > 0, we compute the

reachability probability on this new process, obtaining an approximation in terms of time-inhomogeneous

discrete-time Markov chain (DTMC) converging to the CLA approximation uniformly, when h and ∆z go to 0. At

first sight, there seems to be little gain, as we now have to deal with a |Λ|-dimensional continuous state space.

Indeed, for general regions this can be the case. However, if we restrict to regions defined by intersections of

linear inequalities (i.e. polytopes), we can exploit properties of Gaussian distributions (i.e. their closure with

respect to linear combinations), reducing the dimension of the continuous space to the number of different linear

combinations used in the definition of the linear inequalities (in fact, the same hyperplane can be used to fix both

an upper and a lower bound). As we are generally interested only in one or few projections, the complexity will

then be dramatically reduced.

4.1 Time Discretization Scheme
Given ŶN

, the CLA of X̂N
expressed in terms of concentrations, and matrix Bm×|Λ |, we introduce an exact time

discretization scheme for ẐN = BŶN
. For simplicity we assumem = 1, but all the results extend tom > 1. Fix a

small time step h > 0. By sampling ŶN
at step h and invoking the Markov property,

2
we obtain a discrete-time

Markov process (DTMP) Ŷh,N (k) = ŶN (kh) on continuous space. Applying the linear projection mapping ẐN
to

2
The Gaussian process obtained by the Linear Noise Approximation is Markovian, as it is the solution of a linear Fokker-Planck equation

(stochastic differential equation) [50].
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ŶN (k), and leveraging its Gaussian nature, we obtain a process Ẑh,N (k) = ẐN (kh) which is also a DTMP, though

with a kernel depending on time through the mean and variance of YN
.

Definition 4.1. A (time-inhomogeneous) discrete-time Markov process (DTMP) (Ẑh,N (k),k ∈ [0, I ] ⊆ N) is
uniquely defined by a triple (S,B(S),T), where (S,B(S)) is a measurable space and T : B(S) × S × N→ [0, 1] is
a transition kernel such that, for any z ∈ S , A ∈ B(S) and k ∈ N, T(A, z,k) is the probability that Ẑh,N (k + 1) ∈ A
conditioned on Ẑh,N (k) = z.

From Definition 4.1, it follows that, for [0, I ] ⊆ N, Ẑh,N
is a discrete-time stochastic process defined on the

sample space given by the product space Ω = S I+1
, endowed with the sigma-algebra, B(Ω), generated by the

product topology, and with a probability measure Probh , which is uniquely defined by the transition kernel T

[11].

Thus, in order to characterize Ẑh,N
, we need to compute its transition kernel, T . This is equivalent to computing

fẐN (t+h) |ẐN (t )=z̄ (z), i.e. the density function of ẐN (t + h) given the event ẐN (t) = z̄.

Consider the joint distribution (ŶN (t), ŶN (t+h)), which is Gaussian. Its projected counterpart (ẐN (t), ẐN (t+h))
is thus also Gaussian, with covariance function:

cov(ẐN (t), ẐN (t + h)) = B cov(ŶN (t), ŶN (t + h))BT =
1

N
B cov(YN (t),YN (t + h))BT ,

where cov(YN (t),YN (t+h)) is the covariance function ofYN
at times t and t+h. It follows by the closure properties

of Gaussian processes that (ẐN (t + h)|ẐN (t) = z̄) is Gaussian too, and thus fully characterized by its mean and

variance. Hence, we need to derive cov(YN (t),YN (t + h)). From now on, we denote cov(YN (t + h),YN (t)) =
CY N (t + h, t) and cov(ẐN (t + h), ẐN (t)) = CẐN (t + h, t). Following [28], we introduce the following matrix

differential equation:

dΨ(t , s)

dt
= JF (Φ(t))Ψ(t , s) (9)

with t ≥ s and initial condition Ψ(s, s) = Id , where Id is the identity matrix of dimension |Λ|. Then, as illustrated
in [28], we have:

CY N (t , t + h) =

∫ t

0

Ψ(t , s)W (Φ(s))[Ψ(t + h, s)]Tds, (10)

whereW is the matrix introduced in Eqn (5). This is an integral equation, which has to be computed numerically.

To simplify this task, we derive an equivalent representation in terms of differential equations. This is given by

the following lemma.

Lemma 4.2. Solution of Eqn (10) is given by the solution of the following differential equations:
dCY N (t , t + h)

dt
=W (Φ(t))ΨT (t + h, t) + JF (Φ(t))CY N (t , t + h) +CY N (t , t + h)JTF (Φ(t + h)) (11)

with initial condition CY N (0,h) computed as the solution of:
dCY N (0, s)

ds
= CY N (0, 0 + s)JTF (Φ(s)).

Proof. Applying the general form of the Fundamental Theorem of Calculus to Eqn (10) with respect to t we
get:

dCY N (t , t + h)

dt
= Ψ(t , t)W (Φ(t))Ψ(t + h, t)T +

∫ t

0

d

dt
(Ψ(s, t)W (Φ(s))Ψ(t + h, s)T )ds

= Id ·W (Φ(t))Ψ(t + h, t)T +

∫ t

0

dΨ(s, t)

dt
W (Φ(s))Ψ(t + h, s)Tds +

∫ t

0

Ψ(s, t)W (Φ(s))
dΨ(t + h, s)

dt

T

ds .
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As
dΨ(t,s)
dt = JF (Φ(t))Ψ(t , s), we get

dCY N (t , t + h)

dt
=

W (Φ(t))Ψ(t + h, t)T + JF (Φ(t))

∫ t

0

Ψ(t , s)W (Φ(s))Ψ(t + h, s)Tds +

∫ t

0

Ψ(s, t)W (Φ(s))Ψ(t + h, s)Tds JF (Φ(t + h))
T .

By substituting Eqn (10) we have the result. Similarly, to derive the initial condition CY N (0,h) we can apply the

Fundamental Theorem of Calculus to Eqn (10), but with respect to h. □

Ψ(t + h, t) can be computed by solving Eqn (9). Knowledge of CY N (t , t + h) allows us to directly compute:

CẐN (t , t + h) =
1

N
BCY N (t , t + h)BT .

Then, by using the law for conditional expectation of a Gaussian distribution, we finally have:

E[ẐN (t + h)|ẐN (t) = z̄] = E[ẐN (t + h)] +CẐN (Ẑ
N (t + h),Z (t))C[ẐN (t)]

−1

(z̄ − E[ẐN (t)]) (12)

C[ẐN (t + h)|ẐN (t) = z̄] = C[ẐN (t + h)] −CẐN (t , t + h)cov(Ẑ
N (t))

−1

CẐN (t , t + h). (13)

As the kernel is Gaussian, it is completely determined by its expectation and covariance matrix over time. Note

that the resulting kernel is time-inhomogeneous. The dependence on time is via the mean and covariance of

YN
, which are functions of time and define completely the distribution of YN

. The following result, which is a

corollary of Theorem 3 in [39], guarantees the correctness of the approximation.

Theorem 4.3. Given vector B ∈ Z |Λ | and process ẐN = BŶN with initial condition z0 = Bx̂0 ∈ R, let Ẑh,N be
the DTMP obtained by discretizing ẐN at time step h > 0. Then, for t1, t2 ∈ R≥0 and measurable set A = {x ∈
R
|Λ |
≥0

s .t . ∀i ∈ {1, ...,m}(Bx)i ≤ bi } for b ∈ Rm , it holds that

|PAreach(x̂0, t1, t2) − Probh(∃k ∈ [⌊ t1
h
⌋, ⌈

t2
h
⌉] s .t . (BẐh,N (k))i ≤ bi )| →h→0 0,

uniformly.

4.2 Space Discretization
In order to compute the reachability probability for the DTMP Ẑh,N

, we discretize its continuous state space

into a countable set of non-overlapping cells (regions) of constant size ∆z > 0, obtaining an abstraction in

terms of a discrete-time Markov chain Ẑ∆z,h,N
with state space S∆z . Specifically, given S , the state space of Ẑh,N

,

A = {x ∈ R |Λ | s .t . Bx ≤ b} the target set for B ∈ R |Λ |,b ∈ R, we call A′ = {z ∈ R s .t . z ≥ b}, and partition S \A′

into a grid of cells of length 2∆z, where ∆z defines how fine our space discretization is. For each of the resulting

regions we consider a representative point, given by the median of the set. We call the set of representative points

Ŝ∆z . Then, we have S∆z = Ŝ∆z ∪ {zAd }, where z
A
d is the state representing the target set. Theorem 4.4 guarantees

that for ∆z → 0 the error introduced by the space discretization tends to zero. However, for a fixed N , a possible
choice of ∆z is ∆z = 0.5

N , which means that the rescaled process NẐ∆z,h,N
takes values in Z. Nevertheless, when

the population is of the order of hundreds or thousands, it can be beneficial to consider ∆z > 0.5
N , since a coarser

state space aggregation is reasonable.

Similarly to the previous section (see Definition 4.1), as Ẑ∆z,h,N
is a discrete-time stochastic process, given

[0,N ] ⊆ Nwe can associate to Ẑ∆z,h,N
a probability space with sample space given by the product space (S∆z )N+1

,
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and with a probability measure Prob∆z,h uniquely defined by T ∆z
, the transition kernel of Ẑ∆z,h,N , which is

defined as follows. For z ′d , zd ∈ Ŝ
∆z
, T ∆z (z ′d , zd ,k) is defined as:

T ∆z (z ′d , zd ,k) =

∫ z′d+∆z

z′d−∆z
fẐN (hk+h) |ẐN (hk )=zd (x)dx , (14)

where h is the discrete time step, assumed to be fixed to simplify the notation. For zd ∈ Ŝ
∆z
, we have:

T ∆z (zAd , zd ,k) =

∫
A′

fẐN (hk+h) |ẐN (hk )=zd (x)dz, (15)

and for the last case, we have:

T ∆z (zd , z
A
d ,k) =

{
1 if zd = zAd
0 otherwise

.

That is, zAd is made absorbing. Finally, we define:

P∆z,h,A
reach (zd , t1, t2) = Prob∆z,h(∃k ∈ [⌊ t1

h
⌋, ⌊

t2
h
⌋] s .t . Ẑ∆z,h,N (k) ∈ zAd | Ẑ

∆z,h,N (0) = zd ).

The following theorem, which is a corollary of Theorem 2 in [1], guarantees that the error introduced by the

state space approximation tends to zero, decreasing ∆z.

Theorem 4.4. Let Ẑh,N be a DTMP, and Ẑ∆z,h,N the DTMC obtained by space discretization of Ẑh,N with space
discretization step ∆z > 0. Call z0 the initial state of Ẑh,N and zd,0 ∈ S∆z the discrete state representing the region
containing z0. Then, for t1, t2 ∈ R≥0, and measurable set A ⊆ R,

|Probh(∃k ∈ [⌊ t1
h
⌋, ⌈

t2
h
⌉] s .t . Ẑh,N (k) ∈ A|Ẑh,N (0) = z0) − P

∆z,h,A
reach (zd,0, t1, t2)| →∆z 0

uniformly.

4.3 Correctness
To prove the correctness of our numerical algorithm we need to show that, for any measurable set, the reachability

measure computed on X̂N
converges to that computed on ŶN

. This is guaranteed by the following theorem.

Theorem 4.5. Let C = (Λ,R) be a SRN with induced CTMC X̂N and Ẑ∆z,h,N be the DTMC obtained by space
and time discretization of BŶN . Assume X̂N (0) = x̂0 and the corresponding initial state for Ẑ∆z,h,N is zd,0. Then, for
t1, t2 ∈ R≥0, and A = {x ∈ R

|Λ |
≥0

s .t . ∀i ∈ {1, ...,m}(Bx)i ≤ bi }, for B ∈ Rm×|Λ | and b ∈ Rm , it holds that:

lim

N→∞
lim

h→0

lim

∆z→0

|PAreach(x̂0, t1, t2) − P
∆z,h,A
reach (zd,0, t1, t2)| = 0.

The proof of Theorem 4.5 is detailed in the Appendix. The main idea is to use Theorems 4.4 and 4.3 to show

that the numerical model checking algorithms on the Gaussian process ŶN
are sound. Then, we employ Theorem

2.4 and the theory of weak convergence to show the convergence in distribution of the reachability measure on

X̂N
to that on ŶN

. The proof is complicated by the fact that both ŶN
and X̂N

depend on N .

4.4 Computation of Reachability Probabilities
Our approach for computing reachability probabilities is summarized in Algorithm 1.

In Line 1, we initialize the system at time 0. In the context of the algorithm, S is a set containing the reachable

states at a particular time with probability mass greater than the threshold Th. In our implementation we

partition R with a grid of cells of constant size ∆z > 0. Then, for each cell we select a representative point, and

denote the set of representative points P∆z . S, for any time t > 0, will be a subset of this set. Th equals 10
−14
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ALGORITHM 1: Compute Time-Bounded Probabilistic Reachability

Input: SRN C = (Λ,R) with initial concentration x̂0, B ∈ Z
|Λ |

, I ⊆ R, a finite time interval [t1, t2], a partition of the real

numbers with the set of representative points P∆z , a target set A = {x ∈ R s .t . Bx ∈ I } and a thresholdTh.

Output: PAreach (x̂0, t1, t2).

Set t = 0, k = 0, S = {B · x̂0} with Prob∆z,h (Ẑ∆z,h,N (0) = B · x̂0) = 1;

while t < t1 do
Compute time step h;

S ← {zd ∈ P∆z s .t . Prob∆z,h (Ẑ∆z,h,N (t + h) = zd ) ≥Th where

Prob∆z,h (Ẑ∆z,h,N (k + 1) = zd ) =
∑
z′d ∈S

Prob∆z,h (Ẑ∆z,h,N (k + 1) = zd |Ẑ
∆z,h,N (k) = z′d )Prob

∆z,h (Ẑ∆z,h,N (k) = z′d )}

t ← t + h;

k ← k + 1;

end
while t < t2 do

Compute time step h;

S ′ ← S \ I ;

S1 ← {zd ∈ P∆z \ I s .t . Prob∆z,h (Ẑ∆z,h,N (k + 1) = zd ) ≥Th, where

Prob∆z,h (Ẑ∆z,h,N (k + 1) = zd ) =
∑
z′d ∈S

′

Prob∆z,h (Ẑ∆z,h,N (k + 1) = zd |Ẑ
∆z,h,N (k) = z′d )Prob

∆z,h (Ẑ∆z,h,N (k) = z′d )}

S2 ← {zd ∈ P∆z ∩ I s .t . Prob∆z,h (Ẑ∆z,h,N (k + 1) = zd ) ≥Th, where

Prob∆z,h (Ẑ∆z,h,N (k + 1) = zd ) = Prob∆z,h (Ẑ∆z,h,N (k) = zd )+∑
z′d ∈S

′

Prob∆z,h (Ẑ∆z,h,N (k + 1) = zd |Ẑ
∆z,h,N (k) = z′d )Prob

∆z,h (Ẑ∆z,h,N (k) = z′d )}

S ← S1 ∪ S2;

t ← t + h;

k ← k + 1;

end
return PAreach (x̂0, t1, t2) =

∑
zd ∈S∩I Prob

∆z,h (Ẑ∆z,h,N (k) = zd );

in all our experiments. The use of a threshold guarantees that the algorithm always terminates in finite time.

This introduces a truncation error, which can be easily estimated as shown in [52]. Initially, we have that S

contains only one state B · x̂0. Then, in Lines 3 − 7, we propagate the probability for any discrete step while

t < t1, according to classical algorithms for DTMCs [37]. For generality, we assume that the time step h is

chosen adaptively, according to the system dynamics. Propagating probability is possible, as for any z ′d ∈ S,

Prob∆z,h(Ẑ∆z,h,N (k + 1) = z ′d |Ẑ
∆z,h,N (k) = zd ) = T

∆z (z ′d , zd ,k). From Line 8 to 15, we compute the probabilistic

reachability, PAreach(x̂0, t1, t2), by propagating the probability only for states that are not in A. In fact, states in A

are made absorbing. When we reach t ≥ t2, we have that P
A
reach(x̂0, t1, t2) ≈

∑
z∈S∩I Prob

∆z,h(Ẑ∆z,h,N (⌈
t2

h
rceil) = z |Ẑ∆z,h,N (0) = zd,0).

Example 4.6. We return to the SRN introduced in Example 2.1, and, for N = 100, we consider the following
reachability property:

P=?(F
[0,T ] m̂RNA > P̂ro + 0.2), T ∈ [0, 100]
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Fig. 1. Comparison of the evaluation of P=?(F
[0,T ]mRNA > Pro + 20),T ∈ [0, 100], on the CTMC as estimated by PRISM

[38], and on the CLA approximation for a fixed ∆z and four different values of h.

where =?, in the style of PRISM [38] or PEPA [25], represents the quantitative value of a property. The above

formula asks for the probability that, during the first 100 seconds, the system reaches a state where the mRNA

concentration exceeds the protein concentration by more than 0.2. In Figure 1 we compare the probability value

computed by Algorithm 1 with the same property computed on the CTMC X̂N
using PRISM for different values

of h. We assume ∆z =
0.5
N , which is justified by the fact that the number of molecules is an integer.

5 UNTIL OPERATOR
We show how to generalize the computation of the reachability probabilities of the previous section to the until

operator. For x̂ ∈ R |Λ |
≥0
, let η1(x̂) = B1x̂ ≤ l1 and η2(x̂) = B2x̂ ≤ l2, then, by definition we have:

X̂N , x̂ |= P∼p (η1U
[t1,t2]η2) ⇐⇒ Prob(∃t ∈ [t1, t2] s .t .η2(ω(t)) ∧ ∀t ′ ∈ [0, t),η2(ω(t))|ω ∈ Ωx̂ ),

where Ωx̂ is the set of paths of X̂N
starting in x̂ . To solve this problem we can construct the following stochastic

process:

ẐN = BŶN

where B = (B1,B2)
T
, and ŶN

is the CLA of X̂N
. By the properties of multivariate Gaussian distribution, ẐN

is

still a Gaussian process with mean and covariance matrix given by

E[ẐN (t)] = BE[YN (t)] CẐN (t) =
1

N
BCY N (t)BT , t ∈ R≥0.

Note that ẐN
is again a time-inhomogeneous Markov process, as its kernel depends on the statistics of YN

.

Following the approach of the previous section, we can discretize time and space for ẐN
, and thus obtain a DTMC
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Fig. 2. Comparison of the evaluation of P[0,T ][(Pro < 10)U [0,T ] (mRNA > 30)] on a CTMC as estimated by PRISM [38], and
on the CLA approximation for ∆z = 0.5

N and three different values of h.

Ẑ∆z,h,N
. At this point, the problem reduces to computing the probability for until on the DTMC. Algorithms for

computing the resulting measure on a time-inomhogeneous DTMC exist and are well studied [24]. In fact, to

compute P∼p (η1U
[t1,t2]η2), we can simply make the regions that do not satisfy η1 and those for which η2 holds

absorbing, and then compute the probability of reaching a region for which η2 is satisfied. This can be computed

by resorting on Algorithm 1, as presented in the previous section. Theorem 4.5 then guarantees the following

proposition.

Proposition 5.1. Let η1(x̂) = B1x̂ ∼ l1, η2(x̂) = B2x̂ ∼ l2, and B =
[
B1

B2

]
. For x̂0 ∈ R

|Λ |
≥0
, let zd,0 be the state in the

state space of Z∆z,h,N corresponding to the region containing Bx̂0. Call

Puntil ((x̂0,η1,η2, X̂
N , t1, t2)) = Prob(∃t ∈ [t1, t2] s .t .η2(ω(t)) ∧ ∀t ′ ∈ [0, t),η1(ω(t)) |ω ∈ Ωx̂0

),

P∆z,h
until ((zd,0,η1,η2, Ẑ

∆z,h,N , t1, t2)) =

Prob∆z,h(∃k ∈ [⌊ t1
h
⌋, ⌊

t2
h
⌋] s .t .η2(Z

∆z,h,N (k)) ∧ ∀k ′ ∈ [0,k − 1],η1(Z
∆z,h,N (k ′)) | Z∆z,h,N (0) = zd,0).

Then, it holds that

lim

N→∞
lim

h→0

lim

∆z→0

|Puntil (((x̂0,η1,η2, X̂
N
1
, [t1, t2])) − P

∆z,h
until ((zd,0,η1,η2, Ẑ

∆z,h,N , [t1, t2]))| = 0.

Example 5.2. Let us return to the SRN introduced in Example 2.1. We consider the following quantitative

property:

P=?[(Pro < 10)U [0,T ] (mRNA > 30)],T ∈ [0, 100],

which is satisfied for those paths in which the mRNA population becomes greater than 30 before the protein

population hits 10 molecules. In Figure 2 we evaluate the property for different values of h and fixed N = 100.

Already for h = 5 the property is surprisingly close to the same measure computed on the original CTMC using

uniformization techniques as implemented in PRISM [38]. Note that here the property is expressed in terms of

number of molecules. In fact, as we explained in Section 3 for the CSL properties considered in here the two

representations are equivalent.
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6 CORRECTNESS
The method we present is approximate. In particular, errors are introduced in two ways: by resorting to the CLA

and by discretisation of time and space of the CLA. The quality of these two approximations is controlled by

three parameters: (a) N , the system size, which influences the accuracy of CLA, (b) h, the time step size, and (c)

∆z, the space discretization step, which influences the quality of the approximation of the reachability probability

of the CLA. Then, we have the following result.

Theorem 6.1. Let Ψ be a CSL formula as defined in Definition 3.2, x̂ ∈ R |Λ |
≥0

and z0,d be the state in Z∆z,h,N

corresponding to the region containing x̂0. Then, for N →∞,h → 0,∆z → 0, it holds that:

X̂N , x̂ |= Ψ ↔ Ẑ∆z,h,N , zd0
|= Ψ,

almost surely.

Proof. The proof is by induction on the terms in Definition 3.2. The interesting cases are Ψ = P∼p (F
[t1,t2]η)

and Ψ = P∼p (η1U
[t1,t2] η2). Theorem 4.5 guarantees that, for N →∞,h → 0,∆z → 0, the difference between the

probability of the above properties computed on ŶN
, the CLA of X̂N

, and on X̂N
is equal to ϵ → 0. Assume

Prob(∃t ∈ [t1, t2] s .t .η(ω(t))|ω ∈ Ωx̂ ) = q, and consider the reachability property P∼q(F
[t1,t2]η). In this case,

no approximation algorithm can guarantee to give the right answer, as the threshold is exactly the value of

the reachability property. However, the point q is a set of measure zero with respect to the set of all possible

thresholds, which is a subset of the reals. Same reasoning can be applied to the until case. □

The convergence stated in Theorem 6.1 means that, since N is fixed for a given SRN, then, even if we have control

over h and ∆z, the quality of the approximation depends on how well the CLA approximates the SRN. Error

bounds would be a viable companion to estimate the committed error, and although these could be extimated for

time and space discretization following the approaches in [1, 39], we are not aware of any explicit formulation of

them for the convergence of the CLA. However, experimental results in Section 8 show that the error committed

is generally limited also for moderately small N and quite large h.

6.1 Complexity
Complexity of the method depends on the following: (a) the equations we need to solve, (b) the time step size h,
and (c) the space discretization step ∆z. Algorithm 1 requires solving Eqns (11) and (5), that is, a set of differential

equations quadratic in the number of species. In fact, solving these equations requires computing JF , Jacobian
of F . However, the number of equations we need to solve is independent of the number of molecules in the

system. This guarantees the scalability of our approach. An important point is that Eqn (11) requires solving

Eqn (10) once for each sampling point of the numerical solution of Eqn (11). A possible way to avoid this is to

consider approximate solutions to Eqn (10), which are accurate in the limit of h → 0. However, to keep this

approximation under control, h has to be chosen really small, slowing down the computation. Moreover, for any

sample point, Eqn (10) is solved only for a small time interval (between t and t +h). As a consequence, in practice,

the computational cost introduced in solving Eqn (10) is under control.

A smaller value of h implies that, for a given time interval, we have a greater number of discrete time steps,

which can slow down the computation in some cases. The value of ∆z determines the number of states of the

resulting DTMC. However, we stress that we discretize ẐN (t), a uni-dimensional distribution (orm-dimensional

in the case we havem > 1 linear inequalities). As a consequence, the number of reachable states with significant

probability mass is generally limited and under control. Obviously, if the number of molecules is large and ∆z
extremely small, then this is detrimental to performance.
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7 REWARDS
We extend CSL properties with reward operators as in [37]. As for probabilistic reachability, we will define the

reward structure on the normalised process X̂N
. Formally, we define the state reward function ρ : R |Λ | → R,

which associates a real-valued reward with any point of the normalised state space of X̂N (t), t ∈ R≥0. In this

paper, we make a few assumptions about the regularity of ρ:

• ρ is bounded, i.e. there exists a constant C > 0 such that ρ(x̂) ≤ C for each x̂ ∈ R |Λ | ;
• ρ is Lipschitz continuous on R |Λ | , i.e. there is a constant Lρ such that, for each x̂ , x̂ ′ ∈ R |Λ | , ∥ρ(x̂)−ρ(x̂ ′)∥ ≤
Lρ ∥x̂ − x̂

′∥.

These requirements are important to show the convergence of rewards computed on X̂N
with the same measure

but computed on the normalised CLA ŶN = Y N

N . Moreover, they do not limit the expressiveness of our framework:

for a fixed N , we are interested only in the value of ρ at a finite number of points. Such a function can always be

extended to a Lipschitz continuous one. Boundedness is also not problematic, as we can always assume an upper

bound on a physically meaningful population size, meaning that we can restrict ourselves to a compact set and

define ρ to be constant outside such a set.

Given a reward structure ρ, we consider the following three kinds of rewards.

• Instantaneous Rewards up to finite timeT . ρI (x̂0, X̂
N ,T ) is the expectation of ρ(X̂N (T )), i.e., the expecta-

tion of the reward structure at timeT over all the trajectories of X̂N
that start from state x̂0. More precisely,

for Ωx̂0
, the set of paths of X̂N

starting from x̂0:

ρI (x̂0, X̂
N ,T ) =

∑
x ∈R|Λ|

ρ(x̂)Prob(ω(T ) = x̂ |ω ∈ Ωx̂0
). (16)

• Cumulative Rewards up to a finite time T . Given ω : R≥0 → N
|Λ |
, a path of X̂N

, the cumulative reward

for ω is defined as:

ρC (ω,T ) =

∫ T

0

ρ(ω(t))dt =

|jumps(ω) |∑
i=1

ρ(ω(ti−1))(ti − ti−1)+ (17)

ρ(ω(T ))(T − t |jumps(ω,t ) |) (18)

where jumps(ω, t) ⊂ R≥0 is the set of time instants at which ω changes state between 0 and T . Then, we
define:

ρC (x̂0, X̂
N ,T ) = E[ρC (ω,T ) |ω(0) = Ωx̂0

],

where the expectation is intended over the trajectories of X̂N
starting from state x̂0

• Bounded Reachability Rewards. Given a target set A ∈ R |Λ | , for the normalized process X̂N
, define

ρr each(x̂0,X
N ,A,T ), the cumulative reward until we enter the target set A within time T . Formally, we can

define ρr each(x̂0,X
N ,A,T ) as the cumulative reward until time T for the modified process X̄N

where all

states in A are made absorbing, and where we consider the modified state rewards:

ρ̄(x̂) =

{
0 if x̂ ∈ A

ρ(x̂) otherwise

Remark 1. Note that here ρ is a state reward, that is, a function that associates a real value with any given state
of the process. An alternative reward structure could be based on the transition reward function [16], which can be
used for checking how many times a given reaction fires up to a certain time. However, in the context of SRNs, such a
quantity can be easily expressed with an additional species counting how many times a subset of the transitions fire.
Then, instantaneous rewards can be used to "read" its value. For instance, in Example 2.1, if we want to count the
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number of times a mRNA molecule is produced, we can consider an additional species C and modify the SRN such
that:

→0.5 mRNA +C .

Then, for x̂ ∈ R |Λ |
≥0

we have ρ(x) = x̂C ,where x̂C is the component of vector x̂ relative to speciesC , and NρI (x̂0, X̂
N ,T )

will give the desired measure at time T for x̂0, initial concentration of the species.3.

7.1 Extending CSL with Rewards
In order to incorporate rewards in our framework, given a SRNC = (Λ,R) and the induced CTMC XN , we extend
CSL with the following formulae, whose semantics will depend on the particular reward structure ρ:

R∼r [C
[≤T ]
ρ ] | R∼r [I

=T
ρ ] | R∼r [F

≤T
ρ η]

where η : R |Λ | → {true, false} is a convex predicate over X̂N
,T ∈ R≥0, r ∈ R≥0, and ∼∈ {>, <}. For x̂ ∈ R

|Λ |
≥0
, the

semantics of such formulae is as follows:

X̂N , x̂ |= R∼r [C
[≤T ]
ρ ] iff ρC (x̂ , X̂

N ,T ) ∼ r

X̂N , x̂ |= R∼r [I
=T
ρ ] iff ρI (x̂ , X̂

N ,T ) ∼ r

X̂N , x̂ |= R∼r [F
≤T
ρ η] iff ρr each(x̂ ,X

N ,A,T ) ∼ r ,

where A = {x̂ ′ ∈ R |Λ | s .t .η(x̂ ′)}.

7.2 Computing Expectation and Variance Using Reward Operators
Two of the most common statistics needed when studying stochastic processes are expectation and variance (or

covariance) of some set of variables. Suppose we have a CTMC XN
with values in R |Λ | , and we want to compute

expectation and variance of one of its components XN
i at time t . Then, for x̂ ∈ R |Λ | , we define the following

reward structures on the normalised process:

ρsize (x̂) =

{
x̂i if x̂i < K

K if x̂i ≥ K
ρsize

2

(x̂) =

{
x̂2

i if x̂i < K

K2
if x̂i ≥ K ,

where K ∈ R can be any real number, typically an upper bound on the physically admissible population size. For

instance, for biochemical processes, we can choose K to be of the order of 10
80
, the estimated number of atoms of

the universe. Then, we have

E[XN
i (t)] = NR=?[I

=t
ρsize ]

cov[XN
i (t)] = N (R=?[I

=t
ρsize2

] − (R=?[I
=t
ρsize ])

2).

T being finite and K any non-negative real, the above equality holds for any SRN whose species count remains

finite at least for a finite time interval. Note that, as rewards are defined for the normalised process, we need to

rescale them back to population counts to compute variance and average of the non-normalised process.

3
The multiplication of ρI by N is needed to convert from the normalized process back to the integer population count.
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7.3 Computing Rewards through Central Limit Approximation
Computing reward properties over X̂N

is generally not possible because of the state space explosion problem. As

a consequence, we compute such properties using ŶN , the CLA of X̂N
. We show that the values computed on ŶN

converge (weakly) to those computed on X̂N
. We stress again how working in terms of the normalised processes

is not a limitation. For instance, consider the reward for expectation. If we are interested in the expectation of

population counts for a fixed N , we can either define the reward for x̂ in the normalised space as ρ(x) = Nx̂ , for
N fixed, or rescale the computed reward as done in the previous section.

7.3.1 Instantaneous Rewards. Given a reward structure ρ, instantaneous rewards can be computed on ŶN = Y N

N
as:

ρCLAI (x̂ , ŶN , t) ≈ E[ρ(ŶN (t))] =

∫
K
ρ(x)N(x |E[ŶN (t)], cov[ŶN (t)]])dx ,

where N(x |E[ŶN (t)], cov[ŶN (t)]]) is the normal distribution with mean and covariance matrix respectively,

E[ŶN (t)], cov[ŶN (t)]] for ŶN (0) = x̂ . Furthermore, K ⊆ R |Λ | is a compact set in which we restrict integration for

numerical purposes. The choice of K is such that the error we commit is bounded by a chosen tolerance level.

The following proposition guarantees that ρCLAI (x̂ , ŶN , t) converges to ρI (x̂ , X̂
N ,T ).

Proposition 7.1. Let T ∈ R≥0, then it holds that:

lim

N→∞
ρI (x̂ , X̂

N ,T ) = lim

N→∞
ρCLAI (x̂ , ŶN , t)

.

Proof. We want to prove that, for fixed T > 0, E[ρ(X̂N )] converges to E[ρ(ŶN (T ))] as N tends to infinity.

Using the triangular inequality, it holds that:

|E[ρ(X̂N (T ))] − E[ρ(ŶN (T ))]| ≤

|E[ρ(X̂N ))] − E[ρ(Φ(T ))]| + |E[ρ(Φ(T ))] − E[ρ(ŶN (T ))]|,

where ρ(Φ(T )) is the reward ρ evaluated on the fluid limit Φ(T ). Invoking the fluid approximation theorem

[17], it holds that X̂N (T ) ⇒N→∞ Φ(T ) (as convergence in probability implies weak convergence). Furthermore,

ŶN (T ) = G(T )
√
N
+ Φ(T ) ⇒N→∞ Φ(T ), as G is independent of N and it has a bounded covariance matrix for each T

(which implies convergence in probability). Therefore, recalling that ρ is bounded and continuous by assumption,

both terms on the right hand side of the triangular inequality converge to zero by virtue of the Portmanteau

theorem [12] stating that, for any continuous and bounded functional f on D, the space of R |Λ |−valued Cadlag

functions (i.e. right continuous functions with left limit) [12], it holds that E[f (XN )] →N→∞ E[f (X )] whenever
XN ⇒ X . Thus, we can conclude:

ρI (x̂ , X̂
N ,T ) →N→∞ ρCLAI (x̂ , ŶN ,T ).

□

Example 7.2. We consider the SRN introduced in Example 2.1. We are interested in knowing the expectation

and variance ofmRNA − P over time. This can be computed using the following reward structures:

ρmRNA−P (x̂) =

{
x̂(mRNA) − x̂(P) if x̂(mRNA) − x̂(P) < 10

80

10
80

otherwise

ρ(mRNA−P )2 (x̂) =

{
(x̂(mRNA) − x̂(P))2 if (x̂(mRNA) − x̂(P))2 < 10

80

10
80

otherwise

.
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Fig. 3. NρI (X̂
N ,T ),T ∈ [0, 100] for reward structure ρmRNA−P .

Then, we have:

E[XN
mRNA(t) − X

N
P (t)] = NR=?[I

=t
ρmRNA−P ], t ∈ [0, 100],

Cov(XN
mRNA(t) − X

N
P (t)) = N (R=?[I

=t
ρ (mRNA−P )2 ] − (R=?[I

=t
ρs ize ])

2), t ∈ [0, 100],

where the rewards are computed on the normalised process X̂N . The resulting expectation and variance is

plotted in Figure 3. Note that, in this case, the resulting variance and expectation, as estimated by the CLA, are

guaranteed to be exact for any N . This is because the SRN is linear [32]. It is easy to observe that our algorithms

are exponentially faster than the computation of the same measures on the original CTMC, because of the

continuous nature of the CLA.

7.3.2 Cumulative Rewards. Cumulative rewards can also be computed exploiting ŶN , the CLA approximation

of X̂N
, as shown in the following proposition

Proposition 7.3. Let T ∈ R≥0. Then, ρCLAC (x̂ , ŶN ,T ), the cumulative reward for ŶN starting from ŶN = x̂ , can
be computed as follows

ρCLAC (x̂ , ŶN ,T ) =

∫ T

0

ρCLAI (x̂ , ŶN , s)ds,

Proof. Let ω : R≥0 → R
|Λ |

be a path of ŶN
. Then, we have that

ρCLAC (x̂ , ŶN ,T ) = E[ρC (ω,T )|ω(0) = x̂] = E[

∫ T

0

ρ(ω(t))dt |ω(0) = x̂].

Now, in order to conclude, we can apply Fubini’s theorem [46], which allows us to compute a double integral

using iterated integrals. Thus, switching the order of integration. Being both a probability measure and the
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Lebesque measure over the reals σ−finite measures, a sufficient condition for application of Fubini’s theorem is

that E[
∫ T

0
|ρ(ω(t))|dt] is finite. Owing to boundedness of ρ, there is anM > 0 such that, for all x ∈ R |Λ | , we have

that |ρ(x)| ≤ M . Thus, we have,

E

[∫ T

0

|ρ(ω(t))|dt

]
≤ E

[∫ T

0

Mdt

]
= MT ,

which is finite as T andM are both finite. □

The following proposition, for x̂ ∈ R |Λ | , guarantees that ρCLAC (x̂ , ŶN ,T ) converges to ρC (x̂ , X̂
N ,T )

Proposition 7.4. Let T ∈ R≥0, then it holds that

lim

N→∞
ρC (x̂ , X̂

N ,T ) = lim

N→∞
ρCLAC (x̂ , ŶN ,T )

Proof. For a path ω : R≥0 → R |Λ | , define the following functional RC (T ,ω) =
∫ T

0
ρ(ω(t))dt , which is

defined on D, the space of R |Λ |−valued Cadlag functions (i.e. right continuous functions with left limit) [12].

ρC (x̂ , X̂
N ,T ) = E[RC (T ,ω)], where the expectation is taken over Ωx̂ , the paths of X̂

N
starting from x̂ . As T and

ρ are bounded, for each ω, RC (T ,ω) is bounded. It is also continuous, due to the continuity of ρ. Thus, we can
apply same reasoning as in the proof of Proposition 7.1, applying Portmanteau theorem to conclude. □

Example 7.5. We consider the SRN introduced in Example 2.1. We are interested in knowing the expected

cumulative reward ofmRNA − P to understand if during the time interval there have been, on average, more

mRNA or more P molecules in the system. This can be computed using the reward structure ρmRNA−P
introduced

in Example 7.2, and the following cumulative reward:

NR=?[C
≤T
ρmRNA−P ], T ∈ [0, 500],

where R=?[C
≤T
ρmRNA−P ] is intended to be computed on X̂N . The resulting expectation and variance are plotted in

Figure 4. We stress again how in this case, since the SRN is linear, the measure estimated by the CLA is exact for

any N .

7.3.3 Bounded Reachability Rewards. Bounded reachability rewards can be computed efficiently on the CLA

under a further assumption on the reward structure ρ. Specifically, for x̂ ∈ R |Λ |
≥0
, consider the predicate η(x̂) =

Bx̂ < b, b ∈ (R ∪ {∞})m , m > 0. We assume that the reward structure is defined on the projection of X̂N

spanned by the colums of matrix defining the η predicate, namely ρ : Rm → R assigns a reward to each state of

BX̂N
. Consider the CSL reward property R∼r [F

≤T
ρ η]. That is, R∼r [F

≤T
ρ η] is the bounded reachability reward until

reaching a state inA = {x̂ ∈ R |Λ | s .t . ∀i ∈ {1, ..,m}, (Bx̂)i ≥ bi } during the time interval [0,T ]. Such a reward can

be computed by exploring the approximation of the CLA in terms of the DTMC Ẑ∆z,h,N ,which is obtained by time

and space discretization of the process ẐN = BX̂N
. We call ρr each(x̂0, Ẑ

∆z,h,N , ⌊Th ⌋,A) the bounded reachability

reward computed on Ẑ∆z,h,N
for a number of discrete steps ⌊Th ⌋, where h > 0. Then ρr each(x̂0, Ẑ

∆z,h,N , ⌊Th ⌋,A)

can be computed by considering the modified process Ẑ∆z,h,N
where the target states are made absorbing, and

modifying the reward structure ρ to ρ̄ such that ρ̄(x̂) = 0 for all absorbing states. Then, for x̂0 ∈ R
|Λ |

and zd,0,

the state in the state space if Ẑ∆z,h,N
corresponding to the region containing x̂0, cumulative rewards can be

computed with the following algorithm for n > 0:

ρr each(x̂0, Ẑ
∆z,h,N ,n,A) =

∑̂
x ′<A

ρ̄(x̂ ′)Prob(Ẑ∆z,h,N (n − 1) = x̂ ′ |Ẑ∆z,h,N (0) = zd,0)h + ρr each(Ẑ
∆z,h,N , x̂0,n − 1,A).

(19)
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Fig. 4. NρC (X̂
N ,T ),T ∈ [0, 500], for reward structure ρmRNA−P .

and such that ρr each(Ẑ
∆z,h,N , x̂0, 0,A) = 0 for x̂0 < A. The proof of the following proposition can be found in the

Appendix.

Proposition 7.6. ForT ∈ R≥0 and B ∈ R |Λ |×k letA be the set defined asA = {x ∈ R |Λ | s .t . ∀i ∈ {1, ..,k}, (Bx)i ≥
bi }. Then, for x̂0 ∈ R

|Λ | and zd,0, the state in the state space of Ẑ∆z,h,N corresponding to the region containing x̂0, it
holds that:

lim

N→∞
lim

h→0

lim

∆z→0

|ρr each(x̂0, X̂
N ,T ,A) − ρr each(zd,0, Ẑ

∆z,h,N , ⌊
T

h
⌋,A)| = 0.

Example 7.7. We consider the SRN introduced in Example 2.1. We are interested in knowing the expected

cumulative reward ofmRNA − P for all those paths for which themRNA does not reach 30 individuals within

[0,T ] forT ∈ [0, 50]. We consider the reward structure ρmRNA−P (x) introduced in Example 7.2, and the following

cumulative reward ρr each(X
N ,T ,mRNA < 30) = Nρr each(X̂

N ,T ,mRNA < 30

N ),T ∈ [0, 50]. To compute such a

reward we explore the CLA approximation of XN
. We consider B1 = [1, 0], B2 = [−1, 1] and B = [B1,B2], where

we assume the first component of XN
represents the number of protein molecules in that state. Then, we consider

ẐN
, the projection of the CLA of X̂N

over B, namely, ẐN = BŶN
. At this point we discretize ẐN

with sampling

time h > 0 and a grid of cells of size dz > 0, and compute the above rewards using Eqn (19). The solution to Eqn

(19) is approximate, and errors are introduced by two factors: firstly, by the usage of the CLA approximation of

XN
, and, secondly, by the discretization of the resulting Gaussian process. Thus, we compare our reward value

with the value computed on XN
using 10000 simulations for each time point. The resulting values are plotted in

Figure 5. To perform a further comparison we employ the following metrics, ϵr elmax and ϵr elavд , defined as follows:

ϵr elmax =maxT ∈Σh
|RewCLA

T − RewT )|

|Rew |
, ϵr elavд =

∑
T ∈Σh

|RewCLA
T − RewT )|

|Rew |

1

|Σh |
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Fig. 5. ρr each (x0,T ),T ∈ [0, 35], for reward structure ρmRNA−P estimated using 10000 simulations compared with the CLA
approximation for different values of sampling time h. dz = 0.5 for all experiments.

where Σh is the set of sampling points for sampling time h, RewCLA
T = ρmRNA−P

reach (Ẑ∆z,h,N , x̂0, ⌊
T
h ⌋,A) and RewT =

ρmRNA−P
reach (X̂ , x̂0,T ,A). The calculated metrics are summarised in the table below for three different values of h.

h ϵr elavд ϵr elmax
5 1.5468 7.96

3 0.196 0.88

1.5 0.041 0.24

It is possible to observe how the two measures converge very fast. In fact, already for h = 1.5, which corresponds

to 25 sampling times, the two measures have an average relative error of less than 0.041.

8 EXPERIMENTAL RESULTS
We implemented our algorithms in Matlab and evaluated them on two case studies. All the experiments were

run on an Intel Dual Core i7 machine with 8 GB of RAM. The first case study is a Gene Expression Network

as introduced in Example 2.1. We use this example to demonstrate that our approach is more powerful than

existing approximate techniques. Specifically, we show how our CLA approach, based on a Gaussian process

approximation, is able to correctly evaluate properties that methods based on Fluid Limit Approximation [15]

cannot, while still guaranteeing comparable scalability. The second example is a Phospohorelay Network with 7

species. We use this example to show the trade-off between the different parameters and the molecular population.

More precisely, we show that the accuracy of our approach increases as the number of molecules grows, but can

still give fast and accurate results when the molecular population is relatively small. We validate our results by

comparing our method with statistical model checking (SMC) as implemented in PRISM [38]. In fact, for both
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Fig. 6. The figure plots F=?[mRNA ≥ 174][0,T ime] for h = 1.85 and ∆z = 0.5. The x-axis represents the value of Time and the
y-axis the quantitative value of the formula for that value of Time .

examples, exact numerical computation of the reachability probabilities using uniformisation techniques on the

induced CTMC is not feasible because of state space explosion.

8.1 Gene Expression
We consider the following gene expression model, as introduced in Example 2.1 with initial counts of all the

species equal to 0. We consider the property P=?(F
[0,T ime](mRNA ≥ 175), which quantifies the probability that at

least 175mRNAmolecules are produced during the firstTime seconds, forTime ∈ [0, 1000]. This is a particularly

difficult property because the trajectory of the mean-field of the model, and so the expected value of the CLA,

does not enter the target region. As a consequence, approximate approaches introduced in [28] and [19], which

are based on the hitting times of the mean-field model, fail and evaluate the probability as always equal to 0.

Conversely, our approach is able to correctly evaluate such a property. Figure 6 compares the value computed by

our method with statistical model checking of the same property as implemented in PRISM over 30000 simulations

for each time point and confidence interval 0.01. In Figure 6 we consider h = 1.8 and ∆z = 0.5 and demonstrate

that our approach is able to correctly estimate such a difficult property. Note that, as the mean-field does not

enter the target region, for each time point the probability to enter the target region depends on a portion of

the tail of the Gaussian given by the CLA. As a consequence, the accuracy of our results strictly depends on

how well the CLA approximates the original CTMC, much more than for properties where the mean-field enters

the target region. In the following table, we evaluate our results for two different values of h and ∆z = 0.5. In
order to compare the accuracy we consider the following metrics as defined in Example 7.7, ϵr elavд and ϵr elmax . The

comparison is shown in the table below.

Property Ex. Time h ϵr elavд ϵmax
avд

F=?[mRNA ≥ 174][0,T ime], Time ∈ [0, 100] 298 sec 1.85 0.0075 0.022

F=?[mRNA ≥ 174][0,T ime], Time ∈ [0, 100] 152 sec 5 0.0147 0.13
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(a) (b)

Fig. 7. Comparison of the evaluation of F[0,T ime][L3p > 80] (a) with N = 400 and F[0,T ime][L3p > 180] (b) with N = 800

using statistical model checking as implemented in PRISM and our approach. In both figures we considered h = 0.1, ∆z = 0.5.

8.2 Phosphorelay Network
We now consider a three-layer phosphorelay network consisting of 7 species given by the following reactions:

L1 + B →
0.01

N ·L1·B B + L1p; L2 + L1p →
0.01

N ·L2·L1p L1 + L2p;

L3 + L2p →
0.01

N ·L3·L2p L3p + L2; L3p →0.1·L3p L3;

L2p →0.01·L2p L2; L1p →0.01·L1p L1.

There are 3 layers, (L1,L2,L3), which can be found in phosphorylate form (L1p,L2p,L3p), and the ligand B. We

consider the initial condition x0 ∈ N
7
such that x0(L1) = x0(L2) = x0(L3) = 0.25N , x0(L1p) = x0(L2p) = x0(L3p) =

0 and x0(B) = 0.15N . In Figure 7, we compare the estimates obtained by our approach for two different initial

conditions (N = 400 and N = 800) with statistical model checking as implemented in PRISM [38], with 30000

simulations and confidence interval equal to 0.01. In both experiments we set ∆z = 0.5.
In Figure 7a we can see that, if we increase the time interval of interest, the error tends to increase. This is

because, for N = 400, the CLA and CME do not have perfect convergence. As a consequence, at every step of the

discretized DTMC, a small error is introduced. This source of error is present until we enter the target region

with probability 1. If we increase N the error disappears, and the inaccuracies are due to the finiteness of h and

∆z. However, already for h = 0.1 and N = 800, the CLA produces a fast and reasonably accurate approximation.

In the following table we compare our approach and PRISM evaluations for different values of N and h and

∆z = 0.5
N in the normalised space, which implies the resulting discrete state process takes values in Z.

Property Ex. Time h N ϵr elavд ϵmax
avд

F=?[L3p > 80][0,T ime], Time ∈ [0, 10] 97 sec 0.1 400 0.0088 0.11

F=?[L3p > 180][0,T ime], Time ∈ [0, 10] 130 sec 0.1 800 0.0015 0.0217

F=?[L3p > 80][0,T ime], Time ∈ [0, 10] 28 sec 0.5 400 0.0381 0.24

F=?[L3p > 180][0,T ime], Time ∈ [0, 10] 39 sec 0.5 800 0.0289 0.14

The results show that the best accuracy is obtained for h = 0.1 and N = 800, where h = 0.1 induces a finer

time discretization, whereas the worst are for h = 0.5 and N = 400. We comment that the numerical solution of
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the CME using PRISM is not feasible for this model, and our method is several orders of magnitude faster than

statistical model checking with PRISM (30000 simulations for each time point), which takes several hours for

each property.

9 CONCLUSION
We presented a framework for approximate model checking of a time-bounded fragment of CSL extended with

rewards for CTMCs that are induced from Stochastic Reaction Networks. Our approach employs an abstraction

based on the Central Limit Approximation to approximate the CTMC as a Gaussian process. Then, numerical

procedures for model checking CSL formulae on the resulting Gaussian process are derived. We demonstrate that

our approach does not suffer from the state space explosion problem, thus enabling formal analysis of CTMCs

that cannot be analysed using classical methods based on uniformization and with infinite state space [27, 52].

Deriving model checking algorithms was challenging because the CLA yields a continuous time stochastic process

with an uncountable state space. As a consequence, existing methods that rely on finite state spaces cannot be

used directly and discretizing the uncountable state space induced by the CLA naturally leads to state space

explosion. In order to overcome these issues, we considered reachability regions defined as polytopes. Using the

fact that the CLA is a Gaussian Markov process, for a given linear combination of the species of a SRN we are

able to project the original, multi-dimensional Gaussian process onto a uni-dimensional stochastic process. We

then derived an abstraction in terms of a time-inhomogeneous DTMC, whose state space is independent of the

number of the species of a SRN, as it is derived by discretizing linear combinations of the species. This ensures

scalability. On different case studies, we showed that our approach outperforms existing methods and permits

fast and scalable probabilistic analysis of SRNs. The accuracy depends on parameters controlling space and time

discretization, as well as on the accuracy of the CLA. Using the theory of convergence in distribution we proved

the convergence of our algorithms in the limit of high populations. As a future work we plan to release a tool for

scalable model checking of SRN. Moreover, we wish to investigate the speed of convergence of our methods.

A PROOFS
Theorem 4.5 Let C = (Λ,R) be a SRN with induced CTMC X̂N

and Ẑ∆z,h,N
be the DTMC obtained by space

and time discretization of BŶN
. Assume X̂N (0) = x̂0 and the corresponding initial state for Ẑ∆z,h,N

is zd,0. Then,

for t1, t2 ∈ R≥0, and A = {x ∈ R
|Λ |
≥0

s .t . ∀i ∈ {1, ...,m}(Bx)i ≤ bi }, for B ∈ R
m×|Λ |

and b ∈ Rm , it holds that:

lim

N→∞
lim

h→0

lim

∆z→0

|PAreach(x̂0, t1, t2) − P
∆z,h,A
reach (zd,0, t1, t2)| = 0.

Proof. Without any loss of generality, we assume t1 = 0, t2 = T . Call

Ph,Areach(x̂0, 0,T ) = Probh(∃t ∈ [0, ⌈T
h
⌉] s .t .Zh,N (k) ≤ b | Zh,N (0) = Bx̂0),

and

PY
N ,A

reach(x̂0, 0,T ) = ProbY
N
(∃t ∈ [0,T ] s .t .YN (t) ∈ A |YN (0) = x̂0),

where ProbY
N
is the probabilisty measure of the Gaussian process YN

.

By application of the triangular inequality we have that:
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|PAreach(x̂0, 0,T )−P
∆z,h,A
reach (zd,0, 0,T )| ≤

|PAreach(x̂0, 0,T ) − P
Y N ,A
reach(x̂0, 0,T )|+

|PY
N ,A

reach(x̂0, 0,T ) − P
h,A
reach(x̂0, 0,T )|+

|Ph,Areach(x̂0, 0,T ) − P
∆z,h,A
reach (zd,0, 0,T )|.

The convergence of the third and second components is a consequence of Theorems 4.4 and 4.3. We need to

show that:

lim

N→∞
|PAreach(x̂0, 0,T ) − P

Y N ,A
reach(x̂0, 0,T )| = 0.

Note that we removed the limits for ∆z and h, as this term is independent of time and space discretization. In

what follows we assume that BXN
is a uni-dimensional process. Generalization form > 1 follows from this case.

Intuitively, this holds due to the convergence of XN
to its CLA YN

. A formal proof requires a more involved

machinery. In fact, Theorem 6 states that:

√
N

(
X̂N (t) − Φ(t)

)
⇒ G(t),

hence, to rely on it, we need to reason on the modified stochastic model:

GN (t) =
√
N

(
X̂N (t) − Φ(t)

)
,

rather than on the original CTMC X̂N (t). Now, consider the reachability problem BX̂N ≤ b; rephrasing it in

terms of GN
we get:

BX̂N (t) ≤ b iff BGN (t) ≤
√
N (b − BΦ(t)) = bN (t).

As we can see, the reachability problem for GN
has a different nature: the threshold b becomes both N

dependent and time dependent! In addition, we see that for the CLA, BYN (t) ≤ b iff BG(t) ≤ bN (t). Let’s look
at this reachability problem from the point of view of the trajectory space, i.e. the space of cadlag function

ω : R≥0 → R. Both GN
and G can be seen as probability measures over this space. The reachable set in the

trajectory space depends on N , precisely being RN = {ω | ∃t ∈ [0,T ] : ω(t) ≤ bN (t)}. We also consider the

complement of this set, RcN = {ω | ∀t ∈ [0,T ] : ω(t) > bN (t)}, and the boundary of the set ∂RN = {ω | ∀t ∈
[0,T ] : ω(t) ≥ bN (t) ∧ ∃t ∈ [0,T ] : ω(t) = bN (t)}.

Before proceeding further, we need to understand how the set RN changes as N goes to infinity. Consider the

threshold bN (t) =
√
N (b − BΦ(t)). There are three cases:

(1) if b > BΦ(t), then bN (t) → +∞;
(2) if b < BΦ(t), then bN (t) → −∞;
(3) if b = BΦ(t), then bN (t) = 0.

In the first case, the reachable set at time t converges to R, in the second case to the empty set, in the third case

to (−∞, 0]. Therefore, the limit reachable set R in the trajectory space will be the union for each t of one of these
three kind of sets.

By the assumption that rate functions are real analytic, it follows that Φ(t) is also a real analytic function, and

therefore BΦ(t) will equal b only in a finite number of points of [0,T ], or in the whole interval (a degenerate case

which is easily tractable) [36]. It then follows that b(t) = limN→∞ b
N (t) changes value a finite number of times,

say at times t1, . . . , tn , where it equals zero. Outside these points, it is either plus or minus infinity. The reachable
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set R, in the limit of infinite N , is thus a finite union of sets of the form ti × (−∞, 0] at times ti and either ∅ or R
for each t in between ti−1 and ti .

Now, if in such a union the set (ti−1, ti ) ×R is present at least once, then the reachability probability in the limit

equals exactly one. This is because any trajectoryω will enter the set R in that subregion. In this case, convergence

is easily shown. In fact, being the Skorokhod space a Polish space, any converging sequence GN ⇒ G of random

variables in that space is uniformly tight, meaning that for each ϵ there is a compact space Kϵ such that, outside

it, all random variables and the limit have probability less than ϵ . In particular, a compact set of trajectories

is bounded in [0,T ] with respect to the sup norm [2], meaning that for each ϵ there is a kϵ > 0 such that the

probability that a trajectory ω has modulus |ω(t)| ≤ k uniformly in [0,T ] is more than 1 − ϵ for all N . Now,

consider the time interval (ti−1, ti ) where the reachable set converges to (ti−1, ti ) ×R in the limit. As the threshold

bN (t) is an analytic function of t , removing a region of length ∆ near ti−1 and ti (i.e. restricting to [ti−1+∆, ti −∆]),
we can find an N0 such that, for N > N0, b

N (t) is greater than kϵ uniformly in [ti−1 + ∆, ti − ∆]. Then the limit of

the reachability for GN
is greater than 1 − ϵ for any epsilon, that is, it equals one. The case in which the limit

region R is the empty set for every t is easily proved along the same lines.

The interesting case is the one in which there are some ti ’s where b
N (ti ) = 0 for all N , but it is always negative

outside them, implying the reachable region R converges to the empty set everywhere but in the ti ’s, where it
equals (−∞, 0]. This corresponds to the scenario in which the fluid limit Φ(t) is tangent to the reachable set, but

never enters it, a scenario known to cause trouble in the use of mean field to estimate hitting times [13].

To deal with this last case, let us denote with PN the probability in the trajectory space for BGN
, and with P

the probability for BG.
As before, denote with RN the reachability set for GN

and with R the limit set, taking the threshold bN to

infinity. We now introduce a set which over-approximates RN for N large. This set is defined as follows: invoking

uniform tightness, we fix a large value kϵ as before, so that trajectories of BGN
and of BG are contained in

[−kϵ ,kϵ ] with probability 1 − ϵ , uniformly for t ∈ [0,T ]. Furthermore, we consider points ti where b
N (ti ) is zero,

and take a small neighborhood B∆
i of width ∆ around them. Define the set Rϵ in the trajectory space as:

Rϵ = {ω(t)|ω(t) ≤ 0, for t ∈ B∆
i ,ω(t) ≤ −kϵ elsewhere in [0,T ]}.

By relying on the continuity of the set R for G, we can choose ∆ small enough so as to enforce that |P(Rϵ ) −
P(R)| ≤ ϵ . The continuity of R for G follows from the fact that ω ∈ R if and only if ω(ti ) ≤ 0 for i = 1, . . . ,n, i.e.
R is a finite dimensional projection on ti ’s. Therefore, its boundary is a set of topological dimension less than n in

Rn , which has probability zero under the finite dimensional projection of G on ti ’s (which is Gaussian). Now,

using triangular inequality, we get:

|PN (RN ) − P(R)| ≤ |PN (RN ) − P
N (R)| + |PN (R) − P(R)|

≤ |PN (Rϵ ) − P
N (R)| + |PN (R) − P(R)|

≤ |PN (Rϵ ) − P(Rϵ )|

+ |P(R) − P(Rϵ )| + 2|PN (R) − P(R)|.

The second inequality above follows from the monotonic behaviour of probability distributions, as for each ∆
and kϵ there is an N0 such that, for all N ≥ N0, R ⊂ RN ⊂ Rϵ , hence |P

N (RN ) − PN (R)| ≤ |PN (Rϵ ) − P
N (R)|.

Furthermore, |PN (R) − P(R)| → 0, by the continuity of the set Y . In R, by virtue of Lemmas 1 and 2 below, if

also follows that |PN (Rϵ ) − P(Rϵ )| → 0, and hence:

lim sup

N→∞
|PN (RN ) − P(R)| ≤ ϵ,
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which holds for any ϵ > 0, allowing us to conclude that:

lim

N→∞
|PN (RN ) − P(R)| = 0,

as desired.

Lemma 1. Let b ∈ R, and consider the reachable set R = {ω |∃t : ω(t) ≤ b}. Then PN (R) → P(R), with PN , P as

above.

Proof. The boundary of the reachable set R is the set of trajectories ω such that inf t ∈[0,T ]ω(t) = b. In order to

conclude, we need to show that this set has measure 0. As G is a Gaussian process, assuming the covariance

function is non-zero, we have that the distribution of the infimum (or equivalently the supremum) is absolutely

continuous [40], which implies that the set of trajectories for which in ft ∈[0,T ]ω(t) = b has measure 0. Hence, R is

a continuity set for G, which prove the thesis due to the Portmanteau theorem.

Lemma 2. Consider a reachable set R defined by a piecewise constant threshold. Hence, fix 0 = t1, . . . tn+1 = T ∈
[0,T ], and bi ∈ R, for i = 1, . . . ,n, and let R = {ω |∃i ∈ {1, . . . ,n},∃t ∈ [ti , ti+1] : ω(t) ≤ bi }. Then P

N (R) → P(R),
with PN , P as above.

Proof.We proceed by induction on j, showing that R is a continuity set for G. The case for j = 1 follows from

Lemma 1 above. Suppose we proved it up to j − 1. Then, conditioned on an initial trajectory ω from time zero

to tj , with ω(tj ) = y, G restricted in [tj , tj+1] is a Gaussian process, and we can apply Lemma 1 to show that

the probability of ∂R, restricted in this time span, is zero. Now, the probability of ∂R restricted to [0, tj+1] can

be bounded by the sum of two terms. The first is the probability of ∂R in [0, tj ] , which is zero, the second is

probability of ∂R ∪ Rc up to time tj times the probability of ∂R in [tj , tj+1], conditional on being in ∂R ∪ Rc up
to time tj . Also this second term is zero, as the conditional probability is zero for any initial trajectory ω. The
bound on the probability of ∂R follows because any trajectory in ∂R up to time tj+1 is either touching bj between
[tj , tj+1] (second term), or before tj (first term). The second case overlaps with the first for all trajectories that

touch the threshold both before tj and between [tj , tj+1].

Proposition 7.6. ForT ∈ R≥0 and B ∈ R
|Λ |×k

letA be the set defined asA = {x ∈ R |Λ | s .t . ∀i ∈ {1, ..,m}, (Bx)i ≤
bi }. Then, for x̂0 ∈ R

|Λ |
and zd,0, the state in the state space of Ẑ∆z,h,N

corresponding to the region containing

x̂0, it holds that:

lim

N→∞
lim

h→0

lim

∆z→0

|ρr each(x̂0, X̂
N ,T ,A) − ρr each(zd,0, Ẑ

∆z,h,N , ⌊
T

h
⌋,A)| = 0.

Proof. In order to prove the convergence, we start by introducing some notation. First of all, BX̂N
and BŶN

are

the CTMC and its CLA projected on the inequalities defining the region A. Additionally we denote by Ẑh,N
the

DTMP obtained by time discretization of BŶN
, and Ẑ∆z,h,N

is the space discretization of Ẑh,N
.

We now introduce the following stopping times, which are random variables on R≥0 denoting the random

time in which a certain event happens. In particular, we are interested in the stopping times corresponding to the

event of entering into the region A, usually known as hitting times, for the different processes we consider:

• TN is the hitting time for X̂N
;

• T̄N is the hitting time for ŶN
;

• TN ,h
is the hitting time for Ẑh,N

;

• TN ,h,∆z
is the hitting time for Ẑ∆z,h,N

.

Hitting times are strictly related to the reachability probability. For instance, Prob{∃t ≤ T : X̂N (t) ∈ A} =
Prob{TN ≤ T }. Furthermore, we introduce also the stopping time TG , which is the hitting time for the Gaussian

processG(t) to enter the rescaled region A∞, which is the limiting region, similarly to what we do in the proof of

the Theorem 4.5. We have the following weak convergence relationships for such hitting times:
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• TN ,h,∆z ⇒ TN ,h
as ∆z → 0;

• TN ,h ⇒ T̄N as h → 0;

• T̄N ⇒ TG as N →∞;
• TN ⇒ TG as N →∞;

To show these relationships, one just has to use the correspondence of hitting times with the reachability

probability, and the convergence of the latter by virtue of the proof of Theorem 4. For instance Prob{TN ≤ T } =
Prob{∃t ≤ T : X̂N (t) ∈ A} →N→∞ Prob{∃t ≤ T : G(t) ∈ A∞} = Prob{TG ≤ T }. The pointwise convergence of
the cumulative distributions function of TN to that of T implies weak convergence by the Portmanteau theorem

[12].

In order to prove the convergence of rewards, given a reward structure ρ on Rm and a pathω : R≥0 → R
m ,m >

0, we define the functional R(ω,T ) =
∫ T

0
ρ(ω(s)))ds . In order to evaluate the desired reward, we need to stop the

integration as soon as the process enters the target region A, hence ρr each(X̂
N ,T ,A) = E[R(X̂N , TN )], where the

expectation is taken with respect to both XN
and TN . Then, by triangular inequality, we have:

|E[R(BX̂N , TN )]−E[R(Ẑ∆z,h,N , TN ,h,∆z )]| ≤

|E[R(BX̂N , TN )] − E[R(BŶN , T̄N )]|+

|E[R(BŶN , T̄N )] − E[R(Ẑh,N , TN ,h)]|+

|E[R(Ẑh,N , TN ,h)] − E[R(Ẑ∆z,h,N , TN ,h,∆z )]|.

We will prove the proposition by showing that all three terms on the right hand side of the above inequality

converge to zero. In particular, the third term can be sent to zero for only ∆z → 0, and the second term by sending

only h → 0, as both are related to the discretization of BŶN
. Instead, the first term depends only on N .

We will start with the second term. First, results in [39] imply that Ẑh,N → BŶN
in probability as h → 0.

Furthermore, Theorem 4.3 gives us weak convergence of the hitting times: TN ,h ⇒ T̄N . The challenge in the

second term lies in the fact that it depends on two random variables, so we need to rely again on triangular

inequality to separate them:

|E[R(BŶN , T̄N )] − E[R(Ẑh,N , TN ,h)]| ≤

|E[R(BŶN , T̄N )] − E[R(Ẑh,N , T̄N )]|+

|E[R(Ẑh,N , T̄N )] − E[R(Ẑh,N , TN ,h)]|

Consider now a term appearing in the right hand side, e.g. E[R(BŶN , T̄N )]. As the expectation is taken with

respect to both BŶN
and T̄N , we can rely on the following conditional expectation decomposition:

EBŶ N , T̄N [R(BŶ
N , T̄N )] = ET̄N [EBŶ N [R(BŶ

N , t) | T̄N = t]].

Furthermore, recall that:

EBŶ N [R(BŶ
N , t)] =

∫ t

0

E[ρ(BŶN (s)ds].

Now, consider the term |E[R(BŶN , T̄N )] − E[R(Ẑh,N , T̄N )]|. Applying the previous decomposition, we can upper

bound it by:

ET̄N

[∫ t

0

|E[ρ(BŶN (s) | T̄N = t] − E[ρ(Ẑh,N (s) | T̄N = t]|ds

]
,

where we assume that Ẑh,N (s) is a piecewise constant function in between each step at distance h, to write its
cumulative reward as an integral.
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We have that sups≤t |BŶ
N (s) − Ẑh,N (s)| converges to zero in probability as h → 0 [39]. From this, we

can deduce that E[sups≤t |BŶ
N (s) − Ẑh,N (s)|] converges to zero. This proof presented in [39] is consequence

of the Borell-TIS inequality [2], which guarantees that the supremum of a Gaussian process is still normally

distributed. Hence: |E[ρ(BŶN (s) | T̄N = t] − E[ρ(Ẑh,N (s) | T̄N = t]| ≤ E[|ρ(BŶN (s)) − ρ(Ẑh,N (s))| T̄N = t] ≤
LρE[|BŶ

N (s) − Ẑh,N (s)| T̄N = t] ≤ LρE[sups≤T |BŶ
N (s) − Ẑh,N (s)| T̄N = t] = Lρ∆h , which converges to zero by

the discussion above. Recall that in the above Lρ is the Lipschitz constant of reward ρ . Hence we can bound the

first term by E[
∫ t

0
∆hds] ≤ ∆hT , which goes to zero as h → 0.

Consider now the term |E[R(Ẑh,N , T̄N )]−E[R(Ẑh,N , TN ,h)]|: it tends to zero by application of the Portmanteau

theorem, owing to the weak convergence of TN ,h
to T̄N , and the fact that R(Ẑh,N , t) is a bounded and continuous

function of t (being the cumulative reward up to time t of a bounded function ρ).
The third term in the main inequality, |E[R(Ẑh,N , TN ,h)] − E[R(Ẑ∆z,h,N , TN ,h,∆z )]|, can be shown to converge

to zero using a similar approach, owing to the convergence of the space discretization to the DTMP Ẑh,N
, and

the convergence of the hitting times.

What is left is the first term of the main inequality of the theorem, namely |E[R(BX̂N , TN )] − E[R(BŶN , T̄N )]|,
which has to converge to zero as N diverges.

To simplify the notation below, let us define:

• дN (t) = E[R(BX̂N , t)] is the cumulative reward for BX̂N
up to time t

• γ N (t) = E[R(BŶN , t)] is the cumulative reward for BŶN
up to time t .

Then the first term can be bounded by:

∥E[дN (TN )] − E[γ N (T̄N )]∥ ≤ ∥E[дN (TN )] − E[д∞(TN )]∥

+ ∥E[γ∞(TN )] − E[γ∞(T)]∥

+ ∥E[γ∞(T)] − E[γ∞(T̄N )]∥

+ ∥E[γ∞(T̄N )] − E[γ N (T̄N )]∥

where д∞ = γ∞ is the cumulative reward for the fluid limit BX̂∞ = BΦ.
Consider the first term in the above inequality:

∥E[дN (TN )] − E[д∞(TN )]∥ ≤ Et∼TN

[
E

[∫ t

0

∥ρ(X̂N (s)) − ρ(Φ(s))ds ∥

] ]
≤ Et∼TN

[∫ t

0

LρE[∥X
N (s) − Φ(s)∥]

]
≤ Et∼TN

[∫ t

0

Lρ sup

s≤T
E[∥XN (s) − Φ(s)∥]

]
.

Now sups≤T E[∥XN (s) − Φ(s)∥] converges to zero by virtue of a corollary of the fluid approximation theorem

on the rate of convergence of expectations [29], meaning that there is N1 such that, for N ≥ N1, it is less than

ϵ/(4T ). For all such N , it follows that ∥E[дN (TN )] − E[д∞(TN )]∥ ≤ ϵ/4.
Le us deal with the fourth term:

∥E[γ∞(T̄N )] − E[γ N (T̄N )]∥ ≤ Et∼T̄N [∥γ
∞(t) − γ N (t)∥].

For a fixed t , we have that ∥γ∞(t) − γ N (t)∥ ≤
∫ t

0
E[∥ρ(Φ(s) +G(s)/

√
N ) − ρ(Φ(s))∥] ≤

∫ t
0
E[Lρ ∥G(s)/

√
N ∥] =

Lρ
∫ t

0
E[sups≤T |G(s)|]/

√
N . Now, asG(t) has bounded convariance matrix in [0,T ], E[sups≤T |G(s)|] is finite, say

equal to MG , hence ∥γ
∞(t) − γ N (t)∥ ≤ LρMGt/

√
N , and so ∥E[γ∞(T̄N )] − E[γ N (T̄N )]∥ ≤ LρMGT /

√
N which is

less than ϵ/4 for N ≥ N4, for some N4 > 0.
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Terms two and three in the inequality above, instead, converge by virtue of the Portmanteau theorem and of

the weak convergence of TN or T̄N to TG , hence there is N2 such that they are less that ϵ/4 for N ≥ N2. It then

follows that:

lim sup

N→∞
∥E[дN (TN )] − E[γ N (T̄N )]∥ < ϵ

for an arbitrary ϵ , implying:

lim

N→∞
∥E[дN (TN )] − E[γ N (T̄N )]∥ = 0.

Thus, we showed that |E[R(BX̂N , TN )] − E[R(Ẑ∆z,h,N , TN ,h,∆z )]| converges to zero for ∆z,h tending to zero

and N diverging, as so do all the three terms bounding it.
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